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Thus, if 2, we have

ft(Xt)+ kXt Xt 1k

t=1

@ o X X X

B®27 L o+ ke uoake 12 (24)
t=1 t=1 t=1

fe(ue) + kuy  ug 1k
t=1
which implies the naive algorithm is-competitive. Otherwise, we have

fe(xe) + kxy  xp 1k
t=1

(25)
2X

2
fe(ue) + kug  up 1k — fe(uy) + kug  ug 1k :
t=1 t=1 t=1

We complete the proof by combining (24) and](25).

A.2 Proof of Theorem[2

We will make use of the following basic inequality of squareehorm [Goel et al., 2019, Lemma
12].

kx + yk?  (1+ )kxk?®+ 1+ 1 kyk?; 8 > 0 (26)

Whent 2, we have

fe(xe) + %kxt X¢ 1K

(29} 1+ 1 1
fe(xe) + 5 kug ug 1k%+ > 1+ = KXy X¢ 1 Ug+ U 1K
1+ 1
ft(Xt)+ 2 kUt Ut 1k2+ 1+ — kUt th2+ kut 1 Xt ]_k2

1+ , 2 1
fe(xe) + ?kut ug 1ko+ — 1+ = fe(uy) Fe(xe)+ feoa(ue 1) feoa(xe 1) @

Fort = 1, we have

1+ 2 1
kuq U0k2+ - 1+ - fl(ul) fl(Xl) :

fi(xq)+ %kxl Xok? €@ fi(xq)+

Summing over all the iterations, we have

X 1
fe(xe) + ékxt Xy 1K?
t=1
X
fo0+ 2T ke w2 10T ) fux)
t=1 t=1 t=1
2 1 X
+ - 1+ = fo 1(ue 1) feoa(Xe 1) (27)
t=2
X X X
fe(x¢) + 1+ kug up K2+ 4 1+} fe(uy)  fe(xe)
_ 2 _
t=1 t=1 t=1
4 1 X 1+ X 4 1 X
=— 1+ = fe(ug) + kug up (k2+ 1 — 1+ = fe(Xq):
t=1 t=1 t=1
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First, we consider the case that

1 4 1+} 0, 1 1+} (28)
and have
X 1
fe(xe) + ékxt Xt 1k
t=1
Bl 4 1+ 1 fe(ue) + ! kug  ug 1k?
t=1 t=1
X
max 4 1+} 1+ fo(up)+ %kut Uy 1k?
t=1
To minimize the competitive ratio, we set
4 1 4
— 1+ - =1+ ) = —
and obtain
1 2 4 )J 1 2
fe(xe)+ skxy  xp 1k 1+ - fe(uy) + Skue  up 1k (29)
_ 2 _ 2
t=1 t=1
Next, we study the case that
4 1 1
1 - 1+ - - 1+ -
0, 2
which only happens wher> 4. Then, we have
1 en X 1+ X
fe(xe) + ékxt X¢ 1K? a:e fe(ue) + 5 kug up 1k*:

t=1 t=1 t=1
To minimize the competitive ratio, we set= %, and obtain
1 2 )<T 1 2
fe(xe) + ékxt Xt 1K — fe(ue) + ékut Ur 1k

t=1 4 t=1

which is worse thar{ (29). So, we ke¢p](29) as the nal result.

A.3 Proof of Theorem[3

Sincef () is convex, the objective function 0) isstrongly convex. From the quadratic growth
property of strongly convex functions [Hazan and Kale, 2011], we have

fo(xe) + Ekxt Xi 1k%+ Eku xik?  fi(u)+ Eku X; 1k%; 8u 2 X: (30)
Similar to previous studies [Bansal et al., 2015], the analysis uses an amortized local competitiveness

argument, using the potential functiokx; uk®. We proceed to bounid (x;) + %kxt Xi 1kZ+
ckx; u{k? ckx;i 1 u; 1k?, and have

1
fo(xe) + ékxt Xt 1k®+ ckx;  uik® ckx; 1 up 1K?

fo(xi) + %kxt xi 1k2+ ¢ 2kxy  vik?+2kvy uik?®  ckx¢ 1 up 1K?

4 1 4c
2 1+ 2 fo(X¢) + ékxt Xy 1k2+ —fi(uy) cokxy 1 U 1k

4c 4c
= 1+ —  fix)+ mkxt Xt 1k* + —=f(u) ckxg 1 up 1k*:
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Suppose

we have

+4c

fo(X¢) + %kxt Xi 1K?+ ckx;  uik® ckxi 1 up 1K?

1+ A fe(xe) + Ekxt x¢ 1k? + 4*Cft(ut) ckxy 1 up 1k
& 14+ % fr(u)+ skue x 1k? SKut X k? +4—Cft(ut) ckx; 1 ug 1k
+ +
= 1+8—C fe(ug) + %kut Xt 1k? %kut xik?  ckxi 1 up 1k%:
Summing over all the iterations and assung= ug, we have
1 2 2
fe(x¢) + ékxt Xt 1k + ckxt utk
t=1
X
+
1+ g fe(ue) + % kug  x¢ 1K?
t=1 t=1
X
+
% kui xik* ¢ kxt 1 up 1K?
t=1 t=1
X +40 X +4 X
1+8—C fe(ue) + % kug  x¢ 1K? ( 5 C)"'C kxi 1 ur 1k?
t=1 t=1 t=1
)J +4 XI'
= 1+§: fe(ue) + % kug  x¢ 1K?
t=1 t=1
X
+
%"‘ (of 13: kxy 1 U'[k2 }kut Ut 1k2
t=1
X + X
1+ g fe(ue) + ( 2 29 +c : kug  up 1K?
t=1 t=1
+
max 1+ §3; %+c 2 fo(ue) + %kut ur 1k?
t=1
where in the penultimate inequality we assume
( +4¢ ( +4c¢) 1 ( +4¢0) ¢
+ .
2 2 C1r 0 T2 (32)

Next, we minimize the competitive ratio under the constraintg i (31) fand (32), which can be

summarized as

I
+4c +4c
We rstsetc= ; and = —;, and obtain
1 4 1 1
fo(xe)+ E|<xt Xy 1k2  max 1+ —;1+ = fe(ue) + ékut uy 1k2
t=1 t=1
Then, we set p_
4 1
1+ —=1+ = = —
) 2
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As a result, the competitive ratio is

and the parameter is

A.4 Proof of Theorem[4

The analysis is similar to the proof of Theorem 3 of Zhang ét/al. [2018a]. In the analysis, we
need to specify the behavior of the meta-algorithm and expert-algorithm @t To simplify the
presentation, we set

Xo=0; andx,=0;8 2H: (33)

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts
simultaneously.

Lemma 1 Under AssumptiorH 2 arHi 3, and setting m &, we have
r__
X 5T 1
St(X¢)+ kxy Xt 1K Se(Xe )+ kxy X .k (2G+1)D 5 In v +1 (34)
t=1 t=1 1

foreach 2H.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence

Lemma 2 Under Assumptior{§ 2 afpdl 3, we have

X p2 pX G2
si(xe)+ kx;  x; .k st (uy) 2—+ — kuy uy 1k+ T 7+ G : (35
t=1 t=1 t=1
Then, we show that for any sequence of comparatgrsi1;:::;ut 2 X there exists ang 2 H

such that the R.H.S. df (B5) is almost minimal. If we minimize the R.H.9. df (35) exactly, the optimal
step size is

s
D2+2DPy
Pr)=
(Pr) T(G2 +2G) (36)
From Assumptiofi|3, we have the following bound of the path-length
X (2
0 Pr= kuy  uy 1k TD: (37)
t=1
Thus s s
D? D2+2TD?
2 (PT) 2 :
T(G2+2G) T(G2+2G)
From our construction dfl in (I7), it is easy to verify that
s s
. _ D2 ) D2+2TD?
minH = m and maxH m

As aresult, for any possible value Bf , there exists a step sizg 2 H with k de ned in (19), such
that s

D2

K = 2k 1
T(G2+20)

(Pr) 2 (38)
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Plugging « into (35), the dynamic regret with switching cost of exdert is given by

X X
St(X¢*) + kx¢* x4k St(ut)
t=1 t=1
2 X 2
57 + B kut Ut 1k+ kT % + G
K K =1 (39)
D2 2D X G2

+ kuy uy 1k+ (Pr)T —+G
(Pr) (PT)t:]_ t t 1 (Pr) 2

@gp T(GZ+2G)(D2 +2DPy):

From [I3), we know the initial weight of expéet « is

_ C 1 1

T k(k+1)  k(k+1) (k+1)2

Combining with [34), we obtain the relative performance of the meta-algorithm w.r.t. éxpert
r—

X
st(X)+ kxt X 1K st(X )+ kx* x.“,k  (2G+1)D %[1+2In(k+1)]:
t=1 t=1

k
Wy

(40)
From [39) and[(40), we derive the following upper bound for dynamic regret with switching cost

X
St(Xe) + kxe  X¢ 1K St(uy)
1 t=1 . (41)

t=
3P T(G2+2G)(D2+2DP1)+(2G+1)D %[1+2In(k+1)] :

Finally, from Assumptiofi]1, we have

ft(Xt) ft(ut) hr ft(Xt);Xt Uti @ St(Xt) St(Ut): (42)
We complete the proof by combining (41) and](42).

A.5 Proof of Theorem[3

The analysis is similar to that of Theor¢n 4. The difference is that we need to take into account the
lookahead property of the meta-algorithm and the expert-algorithm.

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts
simultaneously.

q_
Lemma 3 UnderAssumptioH& and setting= 2 2, we have
r_
T 1
si(X¢) + kx¢ Xt 1k St(X; )+ kxy X 4K D 7 In—+1 (43)
t=1 t=1 WO
foreach 2H.
Combining Lemma@]3 with Assumpti¢n 1, we have
r__
X 2] @3]
fe(xe)+ kxy Xt 1k fe(Xe )+ kxy X 4K D % Inwi+1 (44)
t=1 t=1 0

foreach 2H.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence
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Lemma 4 Under Assumptiorf§ 1 afnd 3, we have

X D T
fe(X¢ )+ kxy  X; 4K fe(uy)) —+ — kuy  up 1k+ —: (45)
t=1 t=1 2 t=1 2

The rest of the proof is almost identical to that of Theofém 4. We will show that for any sequence

minimal. If we minimize the R.H.S. of (45) exactly, the optimal step size is
r

DZ+2DPy

(Pr) = - (46)

From (3T7), we know that | r
D? D2+2TD?
— P —_—
T (Pr) T
From our construction dfl in (22), it is easy to verify that
r r
D2+2TD?.
—
As aresult, for any possible value Bf , there exists a step size 2 H with k d&red in (19), suchDD

D2

minH = T ; and maxH

[l
O
O
O
[l
L O
O



1. the sum of the hitting cost and the switching cot if at Ieast% = 3D8 d.
2. there exist a xed point whose hitting cost if.

We consider two cases< D and D. When <D , from Lemmdb

ithd = T, we know that
the dynamic regret with switching cost w.r.t. a xed poinis at least( D

).

Next, we consider the case D. Without loss of generality, we assurbe-D c dividesT. Then,
we partitionT into b =D ¢ successive stages, each of which contdials =D c rounds. Applying
Lemma@ to each stage, we conclude that there exists a sequence of convex funétjons: ; 1 ()
over the domairf ?La; EBi]d whered = T=b =D cin the lookahead setting such that

1. the sum of the hitting cost and the switching cost of any online algorithm is at least
s ro.

3 1 _3 K

8 b=Dc 8 D

P_—

b=Dc — TD );

= (

2. there exists a sequence of pointg :::; ur whose hitting cost i€ and switching cost (i.e.,
path-length) is at most

i k
D —
D
since they switch at most=D ¢ 1times.
Thus, the dynamic regret with switching cost wui; :::;ut is at least
r ﬂ—k
p___
D T — =( TD):

8 D

We complete the proof by combining the results of the above two cases.

B Proof of supporting lemmas
We provide the proof of all the supporting lemmas.

B.1 Proof of Lemmall

Based on the prediction rule of the meta-algorithm, we upper bound the switching cost whHzn
as follows:

X X X X
kxy Xt 1k= W, X4 W, 1X; 1 = w (X X) W, (X, 1 X)
2H 2H 2H 2H
X X X X
Wi (X¢ - X) we(Xy 1 X) + we(Xy 1 X) Wy (X 1 X)
2H 2H 2H 2H
X X
= W (X Xy q) * W wy )X 1 X)
2H 2H
X X _
We Xy Xp g F Wy - Wy 4] X g X
2H 2H
@@ X X X
2 W, X; X, +D we o ow 4j = W, X; X; 1 +Dkwy wi ogkg
2H 2H 2H
(50)

wherex is an arbitrary point iX, andw; = (w, ) »n 2 RN. Whent = 1, from ), we have

le

Xok = kx1k =

X
Wi X4 wy kx; k=
2H 2H 2H

wy kx;  Xgk: (51)
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Then, the relative loss of the meta-algorithm w.r.t. exertcan be decomposed as

St(Xt) + kxy Xt 1k st(xe )+ kxy x4k
t=1 0 t=1 1
; (1) X X
CeEE” g W, Xe Xp g hrfe(xe)ixe  xed + kx, %, kA
t=1 2H
X (52)
+D kwe  wy 1k
0'=? 1
@) X X . . X
= @  w (%) Ci(x)A+D kwy Wy gkg:
t=1 2H t=2
| {z }
=A

We proceed to bound andkw; w; 1kjin ). Notice thatA is the regret of the meta-algorithm
w.r.t. expertE . From Assumptions|2 arjd 3, we have

1] (2]
jhr fe(xe); Xy Xedj kro fo(xe)kkx, xtk..GD:

Thus, we have

GD “i(xy) (G+1)D; 8 2H: (53)
According to the st%ndard analysis of Hedgge [Zhang Ht al., 2018a, Lemma 1] and (53), we have
XX 1.1  T(G+1)2D2
@  w,(xe) Ci(x)A Zin =+ %: (54)
t=1 2H 1

Next, we bounckw; w; 1ki, which measures the stability of the meta-algorithm, i.e., the change
of coef cients between successive rounds. Because the Hedge algorithm is translation invariant, we
can subtracb=2 from " (X, ) such that

ii((x,) D=2j (G+1=2)D; 8 2H: (55)

It is well-known that Hedge can be treated as a special case of “Follow-the-Regularized-Leader” with
entropic regularization [Shalev-Shwartz, ZO&’L]

R(w) = w; logw;
i
over the probability simplex, an|( ) is 1-strongly convex w.r.t. thé;-norm. In other words, we

have * +
. 1 X 1
Wi+1 = argmin —log(wy) + gi;w + —R(w); 8t 1
w2 i=1
where RN is the probability simplex, ang; =["i(x;) D=2] 4 2 RN. From the stability
property of Follow-the-Regularized-Leadgr [Duchi et[al., 2012, Lemma 2], we have

(B5)
kwe  wy 1kg kgt 1ka 2 (G+1=2)D; 8t 2

Then XT
T 1)(@2G+1)D
kwe  wy 1kg ( )G+ 1) : (56)
2
t=2
Substituting[(5§) and (56) intd (b2), we have
St(Xt) + kx¢ Xt 1K St(Xe )+ kxy X 4K
t=1 t=1
1, 1 T(@G+1)2D2 (T 1)(2G+1)D2 1, 1 5T (2G6+1)2D?
=In—+ + =In—+ :
Wy 8 2 A 8

2

We complete the proof by setting= ﬁ &
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B.2 Proof of Lemmal2

First, we bound the dynamic regret of the expert-algorithm. De ne
Xis1 = X¢ rfe(x¢):
Following the analysis of Adef [Zhang etlal., 20118a, Theorems 1 and 6], we have

.1 .
st(X¢) st(ut)@hrft(xt);xt Ul = =Xy XX Uyl

1
=5 kx Ukd K Xy Uka + KX, Xo4q K3
1
=5 kx ukd K Xy Ulks + Skr fo(x¢)k3
@ 1
= kxy  ukd K Xy ukd + -G?
2 2
1
> kx ukd K Xy Uks + EG2
1
=5 kx Uk K Xpp U K3+ kX U k3 K Xy Ukd + 5G2
1
~5 kg Utk K Xep Ua K3+ (Xpy Ut + Xeq o UD)7 (Ur Upa) + QGZ
1
> kx Uk K Xppp Ut K3+ KXy Uss K+ KXoy Uik Kup U ko + 562
1

D
> kx, Utk3 K Xu;3 U1 k3 + —Kup  Upg K+ EG2:

Summing the above inequality over all iterations, we have

X
(st(x¢)  st(uy)) Zikx1 usks + b Kuisr Uk + %Gz
t=1 t=1

o (57)
(2]
iD2+ E KU1 uck + %GZZ
t=1
Since [57) holds whenr.; = ur, we have
1 DX T
(st(x) s(u)) D%+ = kur U gk+ —-G% (58)
t=1 t=1
Next, we bound the switching cost of the expert-algorithm. To this end, we have
X X1 X1 X1
kx; X, k= kXiy1 XK KXiyp X K= krfe(xp)k TG: (59)
t=1 t=0 t=0 t=0

We complete the proof by combining (58) wih [59).

B.3 Proof of Lemmal3

We reuse the rst part of the proof of Lemrpa 1, and start frpnj (52). To bdunde need to analyze
the behavior of the lookahead Hedge. To this end, we prove the following lemma.

Lemma 6 The m%ta-algorithm in Algorith@ 3 satis es

X X 1 1 1 X

@  w,(x) Cix)A ZIn—=— = kw; w 1K (60)
B Wq 2
t=1 2H t=1

forany 2H.
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Substituting[(6D) into[(52), we have

X
St(Xt) + kxy Xt 1k St(X )+ kxy X, 4k
t=1 t=1
1.1 1X
ZIn— = kw; w; 1k¥+D  kwy wp 1kp
Wo 2 _ _
t=1 t=2
1 1 1 1 D ?
—In— - kWt Wt lki + 7|(Wt W lki + —
w, 2 2 2
t=1 r t=2
1,1 TD? T 1
—In—+ =D —- In—+1
o 2 2 Wy
q_—
wherewe set = 1 2,
B.4 Proof of Lemmal8
To simplify the notation, we de ne
X Xt X
Wy = Wo=1;L, = i(x;); andw, = wee S8t L
2H i=1 2H

From the updating rule i (20), it is easy to verify that

woe b
Wtont;St 1:

First, we have
0 1

I‘T =

X
NWr =In @  wee “*A 1n max woe
2H

, 1.1
min L+ —In—
2H W

Next, we bound the related quantity W;=W; 1) as folllows. Forany 2 H, we have

W : woe booow W, .
n e @y W £ =in —41 t(Xq):
W 1 W, wye to1 Wi
Then, we have
m Moo, W X W, = X wIn MV
- t = t
W 1 Wero o W 1
X X
(3 W g N 1 2 N
= w; In W W (%) Ekwt Wi 1K7 W (%)
2H t 2H 2H

where the last inequality is due to Pinsker's inequality [Cover and Thomas| 2006, Lemma 11.6.1].

Th
us 0

X
@ L

X W
t
EWt Wt 1

INWt =In Wo + In ——
Wi 1

t=1 t=1

Combining [68) with[(6p), we obtain
min L, + 1 In 1
2H W,

1
@ EkWt W 1k§_
0 t=1

We complete the proof by rearranging the above inequality.
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2 X N
ki W, (X )A

2H

Wy (X )A
2H

(61)

(62)

(63)

(64)

(65)

(66)



B.5 Proof of Lemmal4

The analysis is similar to that of Theorem 10 of Chen éf al. [2018], which relies on a strong condition
Xy = X 1 rfe(x;):
Note that the above equation is essentially the vanishing gradient conditignwhen [21) is

unconstrained. In contrast, we only make use of the rst-order optimality criterion {Boyd and
Vandenberghe, 2004, i.e.,

1
rfe(x)+ =Xy Xp Y X 0; 8y 2X (67)

which is much weaker.
From the convexity of ;( ), we have
fe(x¢)  fe(ue)
hr fo(x¢);x; Ui

®7 1 1

Ty X U X0 = kx, 1 uk® k x;  uk® k x; X, ,K?

2
1
=5 kxoqou k2 kX, uk®+ kx4 uk® kg ;o up iK% Ok X X, (K?
1 2 2 . H 2
:2— kx; ; ur 1k kx; uk®+ X, ; uc+x; 7 U ;U1 ud K X X, 4K
1
> kx, 1 Up 1k* k x; ugk®+ kx, ; ugk+kx, ; Uy ik kup up gk
1
Sk % NS
@2 1 D 1
> kx, ; U 1k* k x; uk® + —kuy up 1k 2—kxt X, k%

Summing the above inequality over all iterations, we have

1 , DX 1 X )
(fe(x¢)  fe(up)) z—kx0 ugks; + — kuy  u¢ 1k > kx; x; .k
t=1 t=1 t=1 (68)
(iR X X
iD2+ b ku; u; 1k 2i kx, X, k%
t=1 t=1

Then, the dynamic regret with switching cost can be upper bounded as follows

fe(xe )+ kxy X 1k fe(uy)

t=1
8 1 DX 1 X X
2—D2+ = kueouak o= kKX K+ kxy x4k
t=1 t=1 t=1
1 D 1 1
Z—D2 = kueouak o= kX K2+ Sk X K 5
t=1 t=1 t=1
1 D T
—7D2+ — kUt Uy 1k+ —_—
t=1
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