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Abstract

While the conventional compressive sensing as-

sumes measurements of infinite precision, one-

bit compressive sensing considers an extreme

setting where each measurement is quantized to

just a single bit. In this paper, we study the vector

recovery problem from noisy one-bit measure-

ments, and develop two novel algorithms with

formal theoretical guarantees. First, we propose

a passive algorithm, which is very efficient in

the sense it only needs to solve a convex opti-

mization problem that has a closed-form solu-

tion. Despite the apparent simplicity, our theoret-

ical analysis reveals that the proposed algorithm

can recover both the exactly sparse and the ap-

proximately sparse vectors. In particular, for a

sparse vector with s nonzero elements, the sam-

ple complexity is O(s log n/ǫ2), where n is the

dimensionality and ǫ is the recovery error. This

result improves significantly over the previous-

ly best known sample complexity in the noisy

setting, which is O(s log n/ǫ4). Second, in the

case that the noise model is known, we devel-

op an adaptive algorithm based on the principle

of active learning. The key idea is to solicit the

sign information only when it cannot be inferred

from the current estimator. Compared with the

passive algorithm, the adaptive one has a lower

sample complexity if a high-precision solution is

desired.
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1. Introduction

Compressive sensing is designed to recover a sparse sig-

nal from a small number of linear measurements (Donoho,

2006; Candes & Tao, 2006). A variant of com-

pressive sensing, named one-bit compressive sensing,

has attracted considerable interests over the past few

years (Boufounos & Baraniuk, 2008). Unlike the con-

ventional compressive sensing which relies on real-valued

measurements, in one-bit compressive sensing, each mea-
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• Unlike previous studies of one-bit compressive

sensing that require solving optimization problem-

s (Plan & Vershynin, 2013b), the proposed algorithm

has a closed-form solution, making it computationally

attractive.

• Our analysis shows that in the case of noisy one-bit

measure, the proposed algorithm improves the sam-

ple complexity from O(s log n/ǫ4) to O(s log n/ǫ2)
when the target signal is an exactly s-sparse n-

dimensional vector.

• We develop a novel adaptive algorithm to fur-

ther reduce the number of one-bit measure-

ments. When the noisy model is known, the

proposed adaptive algorithm improves the sample

complexity to O(min(s log n/ǫ2, s
√

n log n/ǫ))
if the target vector is exactly s-sparse and to

O(min(s log n/ǫ4, s
√

n log n/ǫ3)) if the target vector

is approximately s-sparse (i.e., ‖x∗‖1/‖x‖2 ≤ √
s).

2. Related Work

One-bit compressive sensing was first introduced

in (Boufounos & Baraniuk, 2008), where only

the noiseless one-bit measure is considered. Let

U = [u1, . . . ,um] ∈ R
n×m be a known measurement

matrix, and y = [y1, . . . , ym]⊤ be the m-dimensional

one-bit measurement, where yi = sign(x⊤
∗ ui). The

authors propose to recover the direction of target signal x∗
by solving the following optimization problem

min
x

‖x‖1 s. t. y ◦ (U⊤x) ≥ 0, ‖x‖2 = 1 (1)

where ◦ stands for the element-wise product between two

vectors. One problem with (1) is that it requires solving

a non-convex optimization problem. A provable optimiza-

tion algorithm was proposed in (Laska et al., 2011) to find

a stationary point of (1). However, none of these two works

provide a formal guarantee on the sample complexity.

In (Jacques et al., 2013), the authors study a similar formu-

lation by replacing ‖x‖1 in (1) with ‖x‖0, and show a sam-

ple complexity of O(s log n/ǫ) for recovering the direction

of a s-sparse vector. However, it remains unsolved as how

to efficiently solve the corresponding non-convex optimiza-

tion problem is unclear. Gopi et al. (2013) developed an ef-

ficient two-stage algorithm for one-bit compressive sensing

that achieves a sample complexity of O(s log n/ǫ).

The first convex formulation for one-bit compressive sens-

ing was proposed in (Plan & Vershynin, 2013a). It solves

the following linear programming problem

min
x

‖x‖1 s. t. y ◦ (U⊤x) ≥ 0, ‖U⊤x‖1 = m (2)

An important property of the formulation in (2) is that it can

recover not only the exactly sparse vector but also the ap-

proximately sparse vector (i.e., ‖x∗‖1/‖x‖2 ≤ √
s). How-

ever, a major drawback of this study is the sample com-

plexity, which is O(s log2 n/ǫ5), exhibits a very high de-

pendence on 1/ǫ.

So far, all the related work discussed above assume the

one-bit measure to be perfect (i.e., yi = sign(x⊤
∗ ui)).

Although several heuristic algorithms (Yan et al., 2012;

Movahed et al., 2012; Jacques et al., 2013) were pro-

posed to handle noise in one-bit measure, none of them

has theoretical guarantees. The only provable recov-

ery algorithm for robust compressive sensing is given

in (Plan & Vershynin, 2013b), where the sparse vector is

recovered by solving the following convex optimization

problem

max
x

x⊤Uy s. t. ‖x‖2 ≤ 1, ‖x‖1 ≤ √
s
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Figure 1. The recovery error of the passive algorithm versus to C,

when γ = C

√

logn

m
, and s = 10.
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Figure 2. The recovery error of each algorithm versus the number

of measurements m, when s = 10 and n = 1000.
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