Empirical Risk Minimization for Stochastic Convex Optimization: $O(1 / n)$ - and $O\left(1 / n^{2}\right)$-type of Risk Bounds

Lijun Zhang
ZHANGLJ@,LAMDA NJ ED CN
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
Tianbao Yang
IANBAO YANGQ, IO A ED
Department of Computer Science, the University of Iowa, Iowa City, IA 52242, USA
Rong Jin Jin
Alibaba Group, Seattle, USA

Abstract

A though there ex st p ent fu theor es of e prears n zat on E for superv sed ear n ng current theoret ca understand ngs of E M for a re ated probe stochast c convex opt zat on CO are ted In th s wor we strengthen the rea of M for CO by exp ot ng s_{\sim} oothness and strong convex ty cond tons to prove the rs bounds F rst we estab sh an $\left.\sim^{\sim}+\sqrt{*}\right)$ r s bound when athrO

where $=\cdot: \mathcal{X} \quad \mathbb{R} \bullet \mathrm{s}$ a hypothes s c ass $(\mathbf{x}) \quad \mathcal{X} \quad \mathbb{R} \mathrm{s}$ an nstance abe parsa ped fro a d str but on \mathbb{D} and $(-): \mathbb{R} \quad \mathbb{R}, ~ \mathbb{R}$ s certa n oss In th s paper we a n focus on the convex vers on of na ey stochast c convex opt zat on CO where both the do an/ and the expected funct on (\rightarrow) are convex
wo c ass ca approaches for so v ng stochast c opt zat on are stochast c approx at on A Kushner and Yn and the sa peaverage approx at on AA the atter of wh ch sa so re ferred to as e prcars n zat on $E M$ nthe ach ne earn ng co unty apn 99°
h e both A and E have been extens ve y stud ed n recent years Bart ett and Mende son , Bart ett et a , Ne rovs et a 9, Mou nes and Bach , Hazan and Ka e , th h et a Agarwa et a , Bach and Mou nes , Zhang et a b, Mahdav et a ost theoret ca guarantees of $\mathrm{E} M$ are restr cted to superv sed earn ng n As po nted out n a se na wor of ha ev hwartz et a 9 the success of M for su perv sed earn ng cannot be d rect y extended to stochast copt zat on Actua y ha ev hwartz et a $\quad 9$ have constructed an nstance of CO that s earnab e by A but cannot be so ved by E M teratures about M for stochast copt zat on nc udng CO are qu te ted and we st ac a fu understand ng of the theory

In $E M$ we are g ven funct ons $1_{n} \quad{ }_{n}$ sa ped ndependent y fro \mathbb{P} and a to n ze an e prca ob ect ve funct on.

$$
\min _{\mathbf{w} \in \mathcal{W}} \widehat{(\mathbf{w})=-1} \sum_{i=1}^{n} i(\mathbf{w})
$$

Let $\widehat{\mathbf{w}} \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} \widehat{(w)}$ be an e prca n zer he perfor ance of E s easured n ter s of the excess r s de ned as

$$
(\widehat{\mathbf{w}}) \quad \min _{\mathbf{w} \in \mathcal{W}}(\mathbf{w})
$$

tate of the artrs bounds of E M nc ude, an ${ }^{\sim}(\sqrt{ })$ bound when the rando funct on () s L psch tz cont nuous where s the d ens ona ty of w, an (1.) bound when ($)$ s strong y convex ha ev hwartz et a 9 , and an () bound when (\rightarrow) s exponent a y concave exp concave Mehta : Fro ex st ng stud es of $E M$ for superv sed earn ng rebro et a we now that s oothness can be ut zed to boost the rs bound hus, t s natura to as whether s oothness can a so be exp o ted to prove the perfor ance of E for $\mathrm{CO} h$ s paper prov des an af r at ve answer to th s quest on Indeed we propose a genera approach for ana yz ng the excess r s of E wh ch br ngs severa provedrs bounds and new rs bounds as we
o state our resu ts we rst ntroduce so e notat ons Let ${ }_{*}=\min _{\mathbf{w} \in \mathcal{W}} \quad(\mathbf{w})$ be the $\quad \mathrm{n} \quad \mathrm{a}$ r s be the odu us of strong convex ty of $($,$) and be the odu us of s oothness of ()$ Denote by $=$ the cond t on nu ber of the probe Our and prev ous resu ts of $E M$ for CO are su ar zed n abe where we a e exp ct the assu pt ons on the rando funct on () the e prea funct on (\mathbf{w}) and the expected funct on (\rightarrow) For our resu ts of $E M$ for CO we assu e the do an s bounded and the rando funct on s nonnegat ve ehgh ght the s gn cance of th s wor as fo ows.
e use the \widetilde{O} and $\widetilde{\Omega}$ notat ons to h de constant factors as we as po y ogar th cactors $\mathrm{n} d$ and n
(1.) AND $\left(\begin{array}{ll}1 & 2\end{array}\right)$ Ype of K Bo ND of E M
ab e $\cdot \mathrm{u}$ ary of Excess Bounds of M for CO A bounds ho dw th h gh probab ty except the one ar ed by ${ }^{*}$ wh ch ho ds n expectat on Abbrev at ons, bounded b convex, c genera zed near, g L psch tz cont nuous. Lp nonnegat ve, nn strong y convex, sc s ooth, 's exponent a y concave exp

\sim hen (\rightarrow) s both convex and s ooth and $(\rightarrow$ s L psch tz cont nuous we estab sh an $\left.\sim^{\sim}+\sqrt{*}\right) \mathrm{rs}$ bound cf heore In the opt stc case that $* \mathrm{~s} \mathrm{~s}$ a $\mathrm{e} \quad *=\left(2\right.$, we obta n an ${ }^{\sim}(\quad) \mathrm{rs}$ bound wh ch s ana ogous to the ${ }^{\sim}(1)$ opt st c rate of $\mathrm{E} M$ for superv sed earn ng $\underset{\sim}{r}$ rebro et a If $(+)$ s a so strong y convex we prove an ${ }^{\sim}\left(+_{\sim} \quad\right)$ rs bound and prove t to $\left(1\left[\begin{array}{c}2\end{array}\right]+{ }^{*}\right)$ when $=\widetilde{\Omega}(\quad) \mathrm{cf}$ heore \quad hus $\mathrm{f} \quad \mathrm{s}$ arge and $* \mathrm{~s}$ $\mathrm{s} \mathrm{a} \quad \mathrm{e} \quad=(1 \quad)$ we get an $\quad 2^{2}$ ris bound wh ch to the best of our now edge s the rst $\quad\left(\begin{array}{ll}2\end{array}\right)$ type of r s bound of E M
hen convex ty s not present $\mathrm{n}(\mathcal{)}$ as ong as $(\rightarrow$ s s ooth $\uparrow()$ s convex and () s $\underset{\sim}{s}$ strong y convex we st obta n an proved rs bound of $\left(1\left[^{2}\right]+\quad *\right)$ when $=$ $\widetilde{\Omega}\left(2^{2}\right)$ wh ch w further pyan $\left(2^{2}\right)$ rs bound $\mathrm{f}{ }_{*}=(1) \mathrm{cf}$ heore F na y we extend the $\left(1\left[{ }^{2}\right]+\quad * \quad\right)$ r s bound to superv sed earn $n g$ w th a genera zed near for Our ana ys s shows that nth s case the ower bound of can be rep aced w th $\Omega\left({ }^{2}\right)$ wh ch s d ens ona ty ndependent cf heore $\boldsymbol{\gamma}$ hus th s resu t can be app ed to $n \mathrm{n}$ te d ens ona cases e g earn ng w th erne s

2. Related Work

In th s sect on we g ve a br ef ntroduct on to prev ous wor on E

2.1. ERM for Stochastic Optimization

As we ent oned ear er there are few wor s devoted to E M for stochastcopt zat on hen \int. \mathbb{R}^{d} s bounded and $(\rightarrow$ s L psch tz cont nuous ha ev hwartz et a 9 de onstrate that $\widehat{ }(\mathbf{w})$ converges to (\mathbf{w}) un for y over $ノ \mathrm{w}$ th an $\sim^{\sim}(\sqrt{ })$ error bound that ho ds w th h gh probab ty, pyng an $(\sqrt{ })$ r s bound of E M hey further estab sh an (1.) r s bound of E M that ho ds n expectat on when $(\perp$ s strong y convex and L psch tz con t nuous tochast copt zat on w th exp concave funct ans s stud ed recent y Koren and Levy and Mehta \quad - proves an ${ }^{\sim}(\quad)$ bound of E Mat ho ds w th h gh probab ty when () s exp concave L psch tz cont nuous and bounded Lower bounds of E for stochast c opt zat on s nvest gated by Fe d an \quad : who exh bts a ower bound of $\Omega\left({ }^{2}\right)$ sa pe co p ex ty for un for convergence that near y atches the upper bound of ha ev hwartz et a

9 , and a ower bound of $\Omega(\quad)$ sa pec co pex ty of E wh ch s atched by our ${ }^{\sim}(+\sqrt{*})$ bound when $* \mathrm{~s} \mathrm{~s}$ a

2.2. ERM for Supervised Learning

e note that there are extens ve stud es on E for superv sed earn ng and hence the rev ew here s non exhaust ve In the context of superv sed earn ng the perfor ance of E scose y re ated to the un for convergence of $\bigwedge()$ to () over the hypothes scass Ko tch ns
In fact un for convergence s a suf c ent cond t on for earnab ty ha ev hwartz and Ben Dav d 4 and n so e spec a cases such as b nary cass cat on t a so a necessary cond t on apn 99 he accuracy of un for convergence as we as the qua ty of the e prca $\mathrm{n} \quad$ zer can be upper bounded n ter s of the co p ex ty of the hypothes $s c$ ass $n c u d n g$ data ndependent easures such as the Cd ens on and data dependent easures such as the Tade acher co pexty

Genera y spea $n g$ when has n te $C d$ ens on the excess $r s$ can be upper bounded by $(\sqrt{\mathrm{VC}}()$) where VC() s the Cd ens on of If the oss (-) sLpschtz con t nuous w th respect to ts rst argu ent we have a \mathfrak{s} bound of $\left(1_{1}{ }^{-}+{ }_{n}()\right)$ where ${ }_{n}()$ s the ade acher co pexty of he acher co pexty typ ca y sca es as ${ }_{n}()=\left(1,{ }^{-}\right)$eg contans near funct ons wth ow nor $\quad \mathrm{pyng}$ an $\left(1,{ }^{-}\right)$ r s bound Bart ett and Mende son here have been ntens ve efforts to der ve rates faster than $\left(1,{ }^{-}\right)$under var ous cond t ons Lee et a 99_{0}^{\prime}, Panchen o , Bart ett et a, Gonen and ha ev hwartz \quad such as ow no se syba ov 4 s oothness rebro et a strong convex ty r dharan et a $\quad 9$ to na e a few a ongst any pec ca y when the rando funct on () s nonnegat ve and s ooth rebro et a have estab shed ars bound of ${ }^{\sim}\left({ }_{n}^{2}()+{ }_{n}(),{ }_{*}^{*}\right)$ reduc ng to an ${ }^{\sim}(1$,$) bound \mathrm{f}{ }_{n}()=\left(1,{ }^{-}\right)$and * $=(1$.$) A genera zed near for of \mathrm{s}$ stud ed by r dharan et a 9 and ars bound of (1) s proved f the expected funct on () $\mathrm{s} \quad$ strong y convex

3. Faster Rates of ERM

e rst ntroduce a the assu pt ons used n our ana ys s then present theoret ca resu ts under d fferent co b nat ons of the and na $y d$ scuss a spec a case of superv sed earn ng

$$
(1 \quad) \text { AND }\left(1^{2}\right) \text { YPE OF } \mathrm{K} \text { Bo ND OF E }
$$

3.1. Assumptions

In the fo ow ng we use, 7 to denote the 2 nor of vectors
Assumption 1 The domain ノis a convex subset of \mathbb{R}^{d}, and is bounded by, that is,

Assumption 2 The random function $(\underset{)}{ }$ is nonnegative, and -smooth over \perp, that is,

$$
\left\|\quad(\mathrm{w}) \quad\left(\mathbf{w}^{\prime}\right)\right\|<, \mathrm{w} \quad \mathrm{w}^{\prime}, \mathrm{w}^{\prime} \mathrm{w}^{\prime} \quad \int \quad \mathbb{P}
$$

Assumption 3 The expected function ($)$ is -Lipschitz continuous over 」, that is,

$$
(\mathbf{w}) \quad\left(\mathbf{w}^{\prime}\right)<!^{\mathbf{w}} \quad \mathbf{w}^{\prime}!\mathbf{w}^{\prime}
$$

Assumption 4 We use different combinations of the following assumptions on convexity.
(a) The expected function ($($ is convex over $\boldsymbol{\perp}$.
(b) The expected function ($)$ is -strongly convex over $\boldsymbol{\perp}$, that is,

$$
(\mathrm{w})+\quad(\mathrm{w}) \mathrm{w}^{\prime} \quad \mathrm{w}+\left.\overline{2}_{2}\right|^{\mathbf{w}^{\prime}} \quad \mathrm{w}_{\mathrm{l}}{ }^{2}<\left(\mathrm{w}^{\prime}\right) \cdot \mathrm{w} \mathrm{w}^{\prime}
$$

(c) The empirical function ${ }^{\wedge}()$ is convex.
(d) The random function ($)$ is convex.

Assumption 5 Let $\mathbf{w}_{*} \quad \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} \quad$ (\mathbf{w}) be an optimal solution to (1). We assume the gradient of the random function at \mathbf{w}_{*} is upper bounded by , that is,

$$
\left(\mathbf{w}_{*}\right)_{!}<\cdot \mathbb{P}
$$

Remark 1 F rst note that Assumption 4(a) s p ed by e ther Assumption 4(b) or Assumption 4(d) and Assumption 4(c) s p ed by Assumption 4(d) econd the s oothness assu p t on of $(\perp \quad \mathrm{p}$ es the expected funct on $(\perp) \mathrm{s}$ s ooth By Jensen s nequa ty we have

$$
\left\|\quad(\mathrm{w}) \quad\left(\mathrm{w}^{\prime}\right)\right\|<\mathrm{E}_{f \sim \mathbb{P}}\left\|\quad(\mathrm{w}) \quad\left(\mathrm{w}^{\prime}\right)\right\|<, \mathrm{w} \quad \mathrm{w}^{\prime}, ~ \bullet \mathrm{w} \mathrm{w}^{\prime} \quad \text {, }
$$

ar y the $\mathrm{e} \operatorname{prca}$ funct on ${ }^{\wedge}()$ sa so s ooth he condition number of $(\perp$ s de ned as the rat o between and $\mathrm{e}=1$

3.2. Risk Bounds for SCO

e rst present an excess rs bound under the s oothness cond t on
Theorem 1 For any 0 . 1.2, 0, define

$$
(.)=2\left(\log \frac{2}{-}+\log \frac{6}{-}\right)
$$

Under Assumptions 1, 2, 3, 4(d), and 5, with probability at least $1 \quad 2$, we have

$$
<\frac{16^{2} \quad(\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)}{}+\frac{8 \quad \log (2 .)}{}+8 \sqrt{\frac{2 \quad \log (2 .)}{2}}+\left(8++\frac{4 \quad(.)}{}\right)
$$

where ${ }_{*}=\left(\mathbf{w}_{*}\right)$ is the minimal risk.
By choos ng s a enough the ast ter n that conta ns beco es non do nat ng obe spec c we have the fo ow ng coro ary
Corollary 2 By setting $=1 \quad$ in Theorem 1, we have $(1 \quad)=.2(\log (2)+,\log (6$.)), and with high probability

$$
(\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)=\left(\frac{\log }{}+\sqrt{\stackrel{*}{*}^{*}}\right)=\sim\left(-+\sqrt{\stackrel{*}{*}^{-}}\right)
$$

Remark 2 he above coro ary p es that under the s oothness and other co on assu pt ons E Mach eves an ${ }^{\sim}(+\sqrt{*})$ rs bound for CO hen the n ars ss a e ${ }_{*}=\left({ }^{2}\right)$ the rate s proved to ${ }^{\sim}(\quad)$ Note that even under the s oothness assu pt on the near dependence on s unavo dabe Fe d an $!$ heore
e next present excess r s bounds under both the s oothness and strong convex ty cond t ons
Theorem 3 Under Assumptions 1, 2, 3, 4(b), 4(d), and 5, with probability at least $1 \quad 2$, we have

Furthermore, if

$$
\underline{4 \quad(\quad)}=4 \quad(\quad)
$$

we also have

$$
\begin{equation*}
\left(\mathbf{w}_{*}\right)<\frac{32^{2} \log ^{2}(2 .)}{2}+\frac{128 \quad * \log (2 .)}{2}+\left(\frac{128^{2} 2}{}+16+4^{2}\right) \tag{w}
\end{equation*}
$$

he above theore can be s p ed by choos ng dfferent va ues of
Corollary 4 By setting $=1 \quad$ in Theorem 3, we have $(1 \quad)=,2(\log (2)+,\log (6$.)), and with high probability

$$
(\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)=\left(\frac{\log }{}+\frac{*}{}\right)=\sim(-+\underbrace{*})
$$

By setting $=11^{2}$, we have $\left(\begin{array}{ll}1 & 2\end{array}\right)=2\left(\log (2)+,\log \left(\begin{array}{ll}6_{2}\end{array}\right)\right)$ and when $=\Omega(\log)=$ $\widetilde{\Omega}(\quad)$, with high probability

$$
(\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)=\left(\frac{1}{2}+\frac{*}{}\right)
$$

(1) AND $\left(\begin{array}{ll}1 & 2\end{array}\right)$ YPE OF K Bo ND OF E M

Remark 3 he rst part of Coro ary 4 shows that E M en oys an ${ }^{\sim}\left(+^{\sim}\right)$ r s bound for stochast c opt zat on of strong y convex and s ooth funct ons In the terature the ost co parabe resu t s the (1) r s bound proved by ha ev hwartz et a 9 but w th str ng d fferences h gh ghted n abe nce the rs bound of ha ev hwartz et a 9 s ndepen dent of the d ens ona ty

Remark 6 Co par ng the second part of Coro ar es © and 4 we can see that the rs bound s on the sa e order but the ower bound of s ncreased by a factor of It s nterest ng to ent on that as ar pheno enon a so happens n stochast c approx at on P ecent y a var ance reduct on techn que na ed Johnson and Zhang or EMGD Zhang et a a was proposed for stochast c opt zat on when both fu grad ents and stochast c grad ents are ava abe In the ana ys sassu es the stochast c funct on sconvex wh e EMGD does not Fro the r theoret ca resu ts we observe that the nd v dua convex ty eads to a dference of factor n the sa peco pex ty of stochast c grad ents

3.3. Risk Bounds for Supervised Learning

If the cond t ons of heore or heore are sat s ed we can drect y use the to estab sh an $\left(1\left[{ }^{2}\right]+{ }^{*} \quad\right)$ r s bound for superv sed earn ng However a a or tat on of these theore s s that the ower bound of depends on the d ens ona ty and thus cannot be app ed to n n te d ens ona cases eg erne ethods cho opf and oa In th ssect on we \exp o t the structure of superv sed earn ng to a e the theory d ens ona ty ndependent e focus on the genera zed near for of superv sed earn ng.

$$
\min _{\mathbf{w} \in \mathcal{W}}(\mathbf{w})=\mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}}\left[\left(\begin{array}{ll}
\mathbf{w} & \mathbf{x}
\end{array}\right)\right]+(\mathbf{w})
$$

where ($\mathbf{w} \mathbf{x} \quad$) s the oss of pred ct $\mathrm{ng}, \mathbf{w} \mathbf{x}$ when the true target s and $(\rightarrow \mathrm{s}$ a regu ar zer G ven tranngexa pes $\left(\begin{array}{ll}\mathrm{x}_{1} & 1\end{array}\right) \quad\left(\begin{array}{ll}\mathrm{x}_{n} & n\end{array}\right)$ ndependent ysa p ed fro \mathbb{D} the e prca ob ect ve s

$$
\min _{\mathbf{w} \in \mathcal{W}} \mathfrak{\imath}(\mathbf{w})=\frac{1}{-} \sum_{i=1}^{n}\left(\begin{array}{lll}
\mathbf{w} \mathbf{x}_{i} \quad i
\end{array}\right)+(\mathbf{w})
$$

e de ne

$$
(\mathbf{w})=\mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}}\left[\begin{array}{lll}
\left(\begin{array}{ll}
\mathbf{w} & \mathbf{x}
\end{array}\right. &)
\end{array}\right] \text { and } \widehat{(w)}=\frac{1}{-} \sum_{i=1}^{n}\left(\begin{array}{lll}
\mathbf{w} & \mathbf{x}_{i} & i
\end{array}\right)
$$

to capture the stochast c co ponent
Bes des $\mathbf{4 (b)}$ and $\mathbf{4 (c)}$ we ntroduce the fo ow ng add t ona assu pt ons e abuse the sa e notat on, 7 to denote the nor nduced by the nner product of a H bert space
Assumption 6 The domain $\boldsymbol{\wedge}$ is a convex subset of a Hilbert space, and is bounded by

Assumption 10 Let $\mathbf{w}_{*} \quad \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}}(\mathbf{w})$ be an optimal solution to (17). We assume the gradient of the random function at \mathbf{w}_{*} is upper bounded by , that is,

$$
\left(\mathbf{w}_{*} \mathbf{x}\right)_{1}<\quad \bullet(\mathbf{x})
$$

Remark 7 he above assu pt ons a ow us to ode any popu ar osses n ach ne earn ng such as regu ar zed square oss and regu ar zed og st c oss Assumptions 7 and $\mathbf{8}$ p y the rando funct on $\left(1_{-} \mathbf{x}\right) \mathrm{s} \quad{ }^{2} \mathrm{~s}$ ooth over $ノ \quad \mathrm{o}$ see th s for any $\mathbf{w} \mathbf{w}^{\prime} \int$ we have

$$
\begin{aligned}
& \|\left(\begin{array}{l}
\mathbf{w} \mathbf{x}) \quad\left(\mathbf{w}^{\prime} \mathbf{x}\right)\|=\|^{\prime}(\mathbf{w} \mathbf{x}) \mathbf{x} \quad{ }^{\prime}\left(\mathbf{w}^{\prime} \mathbf{x}\right) \mathbf{x} \| \\
\hline
\end{array}\right. \\
& \stackrel{9}{<} \cdot 1(\mathbf{w} \mathbf{x}) \quad{ }^{\prime}\left(\mathbf{w}^{\prime} \mathbf{x} \quad\right)^{\prime}<\quad, \mathbf{w} \mathbf{x} \quad, \mathbf{w}^{\prime} \mathbf{x} \cdot \stackrel{9}{<} \quad{ }^{2} \mathbf{w} \quad \mathbf{w}^{\prime} \text {, }
\end{aligned}
$$

By Jensen s nequa ty (\square) s a so $\quad 2 \mathrm{~s}$ ooth Not ce that $\quad 2$ s the odu us of s oothness of () and s the odu us of strong convex ty of ()\quad th a s ght abuse of notat on we de ne
$=\quad 2$ and the cond t on nu ber as the rat o between and $\mathrm{e}=$ F na y we note that the regu ar zer $($,$) cou d$ be non-smooth
e have the fo ow ng excess ris bound of E for superv sed earn ng
Theorem 7 For any 0 . 1 2, define

$$
\begin{array}{r}
=4\left(8+\sqrt{2 \log \frac{2 \log _{2}()+\log _{2}(2)}{}}\right) \\
=\left(\mathbf{w}_{}\right)=\left(\mathbf{w}_{*}\right) \quad\left(\mathbf{w}_{*}\right)
\end{array}
$$

Under Assumptions 4(b), 4(c), 6, 7, 8, 9, and 10 with probability at least $1 \quad 2$, we have

$$
\begin{equation*}
\left(\mathbf{w}_{*}\right)<\max \left(\frac{+}{2}+\frac{1}{2^{4}} \frac{4^{2} 22}{}+\frac{4 \quad \log (2 .)}{8 \quad * \log (2 .)}\right) \tag{w}
\end{equation*}
$$

Furthermore, if

$$
\frac{16^{2} \quad 2}{2}=16^{2} 2
$$

with probability at least $1 \quad 2$, we have

$$
\begin{equation*}
\left(\mathbf{w}_{*}\right)<\max \left(\frac{+}{2}+\frac{2^{4}}{2^{2}} \frac{8 \log ^{2}(2 .)}{2}+\frac{16 \quad * \log (2 .)}{}\right) \tag{w}
\end{equation*}
$$

Remark 8 he rst part of heore presents an (.) rs bound s ar to the (1) rs bound of r dharan et a 9 he second part s an $\left(1\left[{ }^{2}\right]+\quad * \quad\right.$ rs bound and n th s case the ower bound of $\mathrm{s} \Omega\left({ }^{2}\right)$ wh ch sd ens ona ty ndependent hus heore can be app ed even when the d ens ona ty s $n \mathrm{n}$ te Genera y spea ng the regu ar zer ($)$ s nonnegat ve and thus ${ }_{*}<{ }_{*}$ o the second bound s even better than those n heore s and

F na y we note that heore shou d be treated as a counterpart of heore for superv sed earn ng because both of the do not re y on the nd v dua convex ty e Assumption 4(d) One ay wonder whether $t \mathrm{~s}$ poss b e to der ve a counterpart of heore that s whether $t s$ poss b e to ut ze the nd v dua convex ty to reduce the ower bound of by a factor of ew nvest gate th s quest on as a future wor

[^0]
4. Analysis

e here present the ey dea of our ana ys s and the proof of heore he o thed ones can be found n append ces

4.1. The Key Idea

By the convex ty of $\widehat{ }()$ and the opt a ty cond t on of $\widehat{\mathbf{w}}$ Boyd and andenberghe 4 we have
(1) AND (1. ${ }^{2}$) YPE OF K BO ND OFE M

Lemma 1 Under Assumptions 2 and 4(d), with probability at least 1
where the ast step s due to

Fro 4 we get

$$
\begin{aligned}
& \frac{1}{2}\left((\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2 \quad \widehat{\mathbf{w}} \quad \mathbf{w}_{*}+\frac{}{2}+\frac{(.)}{}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \\
& <\frac{8^{2} \quad(.)}{2}+\frac{4 \quad \log (2 .)}{4} \sqrt{\frac{2 * \log (2 .)}{2}}+\left(4+\frac{2}{2} \quad(\quad)\right)
\end{aligned}
$$

wh ch p es

5. Conclusions and Future Work

In th s paper we study the excess r s of E for CO Our theoret ca resu ts show that t poss be to ach eve (1.) type of rs bounds under the soothness and s a $n \quad$ a s cond tons e heore or the s oothness and strong convex ty cond t ons e the rst part of heore s and A ore exc t ng resu $t s$ that when s arge enough $E M$ has (1. ${ }^{2}$) type of rs bounds under the s oothness strong convex ty and $s a n d r s$ cond t ons e the second part of heore s and

In the context of $C O$ there re a \bar{n} any open probe s about $E M$
Our current resu ts are restr cted to the H bert or Euc dean space because the s oothness and strong convex ty are de ned n ter s of the 2 nor $\mathrm{e} w$ extend our ana ys s to other geo etr es n the future
As ent oned n Remark 3 under the strong convex ty cond t on ad ens ona ty ndependent r s bound eg ${ }^{\sim}(\quad)$ or ${ }^{\sim}(1 \quad)$ that ho ds w th h gh probab ty st st ng As d scussed n Remark 8 t s unc ear whether the convex ty of the oss can be exp o ted to prove the ower bound of n the second part of heore \quad Idea y we expect that $=\Omega() \mathrm{s}$ suf c ent to de ver an $\left(1\left[\begin{array}{l}2\end{array}\right]+\quad *\right) \mathrm{r} \mathrm{s}$ bound
4 he $\left(\begin{array}{ll}1 & 2\end{array}\right)$ type of r s bounds requ re both the s oothness and strong convex ty cond t ons One ay nvest gate whether strong convex ty can be re axed to other wea er cond tons such as exponent a concav ty Hazan et a
F na y as far as we now there are no $\left(\begin{array}{ll}1 & 2\end{array}\right)$ type of r s bounds for stochast c approx at on A ew try to estab sh such bounds for A

Acknowledgments

h s wor was part a y supported by the N FC : \quad IT J angsu F BK $\quad 0^{8}$ N F II 4. 9 II 499 and the Co aborat ve Innovat on Center of Nove oftware echno ogy and Industr a zat on of Nan ng n vers ty
(1.) AND $\left(1^{2}\right)$ YPE OF ${ }^{2}$ BO ND OFE M

References

A e h Agarwa Peter L Bart ett Pradeep iv u ar and Mart n J a nwr ght Infor at on theoret c ower bounds on the orace e co pex ty of stochast c convex opt zat on IEEE Transactions on Information Theory ${ }^{\circ} 49$

Franc s Bach and Er c Mou nes Non strong y convex s ooth stochast c approx at on w th con vergence rate (1) In Advances in Neural Information Processing Systems 26 pages
Γ
Peter L Bart ett and hahar Mende son ande acher and gauss an $88 \mathrm{pextes}, \mathrm{rs}$ bounds and structura resu ts Journal of Machine Learning Research ,4: 4^{8}

Peter L Bart ett O ver Bousquet and hahar Mende son Loca rade acher co pextes The Annals of Statistics $4.49_{\boldsymbol{\top}}$
tephen Boyd and Leven andenberghe Convex Optimization Ca br dge n vers ty Press
Gu a Desa vo Mehryar Mohr and ar yed Learn ng w th deep cascades In Proceedings of the 26th International Conference on Algorithmic Learning Theory pages 4 .9
ta y Fe d an Genera zat on of er n stochast c convex opt zat on. he d ens on str es bac ArXiv e-prints arX v. : ${ }^{8} 444$!

A on Gonen and ha ha ev hwartz Average stab ty s nvar ant to data precond t on $n g \quad p$ cat ons to exp concave e prcars n zat on ArXiv e-prints arX v.: 4

E ad Hazan and atyen Ka e Beyond the regret n zat on barr er. an opt a a gor th for sto chast c strong y convex opt zat on In Proceedings of the 24th Annual Conference on Learning Theory pages 4 :

E ad Hazan A t Agarwa and atyen Ka e Logar th c regret a gor th s for on ne convex opt zat on Machine Learning i9 $\quad \therefore 9 \quad 9 \quad$ -
Je Johnson and ong Zhang Acce erat ng stochast c grad ent descent us ng pred ct ve var ance reduct on In Advances in Neural Information Processing Systems 26 pages
ad r Ko tch ns Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems pr nger
o er Koren and K r Levy Fast rates for exp concave e prcag r n zat on In Advances in Neural Information Processing Systems 28 pages $4_{\bar{T}}$
Haro d J Kushner and G George $\mathrm{Y}_{8} \mathrm{n}$ Stochastic Approximation and Recursive Algorithms and Applications pr nger secon 4 J \quad - 9 gIn

Mehrdad Mahdav L-un Zhang and iong Jn Lower and upper bounds on the genera zat on of stochast cexponent a y concave opt zat on In Proceedings of the 28th Conference on Learning Theory

N shant A Mehta Fast rates w th h gh probab ty $\mathrm{n} \exp$ concave stat st ca earn ng ArXiv eprints $\operatorname{arX} \mathrm{v}_{-}$- \quad -
Ton Mer and ong Zhang Genera ǧat on error bounds for bayes an xture a gor th s Journal of Machine Learning Research 4.. 9 .
Erc Mou nes and Franc s Bach Non asy ptot cana ys of stochast c approx at on a go r th s for ach ne earn ng In Advances in Neural Information Processing Systems 24 pages 449

A Ne rovs A Judts y G Lan and A hap ro toust stochast capprox at on approach to stochast c progra ng SIAM Journal on Optimization $94 ; \boldsymbol{F}^{4} \quad i 9 \quad 9$
Yur Nesterov Introductory lectures on convex optimization: a basic course vo u e^{8} of Applied optimization K uwer Acade c Pub shers

D try Panchen o o e extens ons of an nequa ty of vapn and chervonen selectronic Communications in Probability
G es P ser The volume of convex bodies and Banach space geometry Ca br dge racts n Mathe at cs No 94 Ca br dge n versty Press 99
Yan v Pan and an ershyn n One btco pressed sens ng by near progra ng Communications on Pure and Applied Mathematics $\therefore{ }^{8}$, $\quad{ }^{9}$
A exander h n Ohad ha r and Karth r dharan Ma ng grad ent descent opt a for strong y convex stochast copt zat on In Proceedings of the 29th International Conference on Machine Learning pages 4494 '

Bernhard chó opf and A exander J o a Learning with kernels: support vector machines, regularization, optimization, and beyond MI Press
ha ha ev hwartz and ha Ben Dav d Understanding Machine Learning: From Theory to Algorithms Ca br dge n vers ty Press 4
ha ha ev hwartz Ohad ha r Nathan rebro and Karth rdharan tochast c convex opt zat on In Proceedings of the 22nd Annual Conference on Learning Theory 9
A exander hap ro Dar n a Dentcheva and Andrze diszczyns Lectures on Stochastic Programming: Modeling and Theory IAM second ed t on 4
teve a e and D ng Xuan Zhou Learn ng theory est ates va ntegra operators and the rap prox at ons Constructive Approximation :

```
(1. ) AND (1}\mp@subsup{)}{}{2})\mathrm{ YPE OF K BO ND OFE M
```

Nathan rebro Karth r dharan and A bu ewar Opt st crates for earn ng w th a s ooth oss ArXiv e-prints arX v. 99

Karth r dharan ha ha ev shwartz and Nathan rebro Fast rates for regu ar zed ob ect ves In Advances in Neural Information Processing Systems 21 pages 4

A exandre B syba ov Opt a aggregat on of c ass ers n stat st ca earn ng The Annals of Statistics . $\quad 1$ ad $\quad \mathrm{r}$ apn The Nature of Statistical Learning Theory pr nger second ed t on ad rN apn Statistical Learning Theory ey Intersc ence 99^{8}
L- un Zhang Mehrdad Mahdav and pendentaccess of fu grad ents In Advance in Neural Information Processing Systems 26 pages $99^{88} \quad a$
L- un Zhang anbao Yang Hong Jn and X aofe He (log) pro ect ons for stochast cop t zat on of s ooth and strong y convex funct ons In Proceedings of the 30th International Conference on Machine Learning b

Appendix A. Proof of Lemma 1

e ntroduce Le a of ae and Zhou
Lemma 3 Let be a Hilbert space and let be a random variable with values in. Assume
 ${ }^{\text {drawers of }}$. For any 0 1, with confidence $1!$,

$$
\| \frac{1}{\sum_{i=1}^{m}\left[\begin{array}{ll}
i & \mathrm{E}[i]
\end{array}\right] \|<\frac{2 \log (2 .)}{}+\sqrt{2^{2}(\mathrm{l}) \log (2 .)}}
$$

e rst cons der a xed w ($\boldsymbol{\omega}$) nce $i_{i}(\not) \mathrm{s} \quad \mathrm{s}$ ooth we have

$$
!{ }^{i(\mathbf{w})} \quad{ }^{i\left(\mathbf{w}_{*}\right)}<!^{\mathbf{w}} \quad \mathbf{w}_{*}
$$

Because $i(f$ s both convex and s ooth by of Nesterov 4 we have

$$
\left.!\quad i(\mathbf{w}) \quad i\left(\mathbf{w}_{*}\right)\right|^{2}<\left({ }_{i}(\mathbf{w}) \quad i\left(\mathbf{w}_{*}\right) \quad, \quad i\left(\mathbf{w}_{*}\right) \mathbf{w} \quad \mathbf{w}_{*}\right)
$$

a ng expectat on over both s des we have

where the ast nequa ty fo ows fro the opt a ty cond t on of \mathbf{w}_{*} e

$$
\left(\mathbf{w}_{*}\right) \mathbf{w} \quad \mathbf{w}_{*} \quad 0 \bullet \mathbf{w}
$$

Fo ow ng Le a w th probab ty at east 1 . we have

$$
\begin{aligned}
& \left\|(\mathbf{w}) \quad\left(\mathbf{w}_{*}\right) \quad\left[\widehat{ }(\mathbf{w}) \quad \widehat{ }\left(\mathbf{w}_{*}\right)\right]\right\| \\
& =\left\|\quad(\mathbf{w}) \quad\left(\mathbf{w}_{*}\right) \quad-1 \sum_{i=1}^{n}\left[\quad i(\mathbf{w}) \quad i\left(\mathbf{w}_{*}\right)\right]\right\| \\
& <\frac{2}{}, \mathbf{w} \quad \mathbf{w}_{*}, \log (2 .), \sqrt{2\left((\mathbf{w}) \quad\left(\mathbf{w}_{*}\right)\right) \log (2 .)}
\end{aligned}
$$

e obta n Le a by ta ng the un on bound over a $w \quad$ ($\boldsymbol{~} \quad$ o th s end we need an upper bound of the cover ng nu ber. (\quad)

Let \mathcal{B} be an un t ba of d ens on and (\mathcal{B}) be ts ${ }_{8}$, net w th n a card na ty Accor d ng to a standard vo u e co par son argu ent Pser 99 we have

$$
\log \cdot(\mathcal{B})^{*}<\log \frac{3}{-}
$$

Let $\mathcal{B}($,$) be a ba centered at or g \mathrm{n} w$ th rad us. nce we assu e $/ \subset^{\subset} \mathcal{B}($,$) t fo ows that$

$$
\log ^{+} \quad(\boldsymbol{\Lambda} \quad)^{+}<\log |\quad(\mathcal{B}(,) \overline{2})|<\log \frac{6}{}
$$

where the rst nequa ty sbecause the cover ng nu bers are a ost ncreas ng by nc us on P an and ershyn n

Appendix B. Proof of Lemma 2

o app y Le a we need an upper bound of $\left.\mathrm{E}\left[{ }_{i} i^{\left(\mathbf{w}_{*}\right)}\right)^{2}\right] \quad$ nce $i() \mathrm{s} \quad \mathrm{s}$ ooth and nonnegat ve fro Le a 4 of rebro et a we have

$$
i\left(\mathbf{w}_{*}\right)^{2}<4 \quad i\left(\mathbf{w}_{*}\right)
$$

and thus

$$
\mathrm{E}\left[\quad i\left(\mathbf{w}_{*}\right)_{1}^{2}\right]<4 \quad \mathrm{E}\left[i\left(\mathbf{w}_{*}\right)\right]=4 \quad *
$$

Fro Assumption 5 we have, $i\left(\mathbf{w}_{*}\right)<\quad$ hen accord ng to Le a w th probab ty at east 1 we have
$\left.\|\left(\mathbf{w}_{*}\right) \quad \widehat{(} \mathbf{w}_{*}\right)\|=\| \quad\left(\mathbf{w}_{*}\right) \quad \frac{1}{-} \sum_{i=1}^{n} i\left(\mathbf{w}_{*}\right) \|<\frac{2 \log (2 .)}{}+\sqrt{\frac{8 \log ^{2} .}{}}$

Appendix C. Proof of Theorem 3

he proof fo ows the sa e og c as that of heore nder Assumption 4(b) beco es

$$
\begin{aligned}
& (\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)+\overline{2}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \\
< & (\underbrace{\|(\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right) \quad\left[{ }^{\wedge}(\widehat{\mathbf{w}}) \quad \widehat{\left.\left(\mathbf{w}_{*}\right)\right] \|}\right.}_{:=A_{1}}+\underbrace{\left.\| \quad\left(\mathbf{w}_{*}\right) \quad \widehat{\left(\mathbf{w}_{*}\right) \|}\right)}_{:=A_{2}} \underbrace{\| \widehat{\mathbf{w}} \quad \mathbf{w}_{*}}
\end{aligned}
$$

$$
(1 .) \text { AND }\left(1 r^{2}\right) \text { YPE OF K BO ND OF E M }
$$

ubst tut ng and nto ${ }^{8}$ w th probab ty at east $1 \quad 2$ we have

$$
\begin{aligned}
& (\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)+\overline{2}!^{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*}{ }^{2} \\
& <\frac{(.)_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*_{1}}{ }^{2}+_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \sqrt{-(.)\left((\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)\right)}}{l} \\
& +\frac{2 \quad \log (2,)_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}+}{}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \sqrt{\frac{8 \quad \log (2,)}{}} \\
& +2 \quad \widehat{\mathbf{w}} \quad \mathbf{w}_{*}+{ }_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \sqrt{\frac{(.)}{(.)}}+\frac{\left(\widehat{\mathbf{w}} \mathbf{w}_{*}\right.}{}
\end{aligned}
$$

o prove we subst tute \quad and

$$
!^{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*}, \sqrt{\frac{8 \quad{ }^{\log (2 .)}}{}}<\frac{4 \quad * \log (2 .)}{2} \rrbracket^{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*}{ }^{2}
$$

nto 9 and then obta n

$$
\begin{aligned}
& \frac{1}{2}\left((\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)\right) \\
& <\frac{2(.)_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}}{}+\frac{2}{2} \log (2,)_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}+\underbrace{4 \log (2 .)}_{*} \\
& +2 \quad \widehat{\mathbf{w}^{\prime}} \quad \mathbf{w}_{*}+\frac{}{2}+(.), \widehat{\mathbf{w}} \quad \mathbf{w}_{*}
\end{aligned}
$$

wh ch p es
o prove we subst tute

$$
\begin{aligned}
& \frac{2 \log (2,)_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}}{1}<\frac{16{ }^{2} \log ^{2}(2,)}{2}+\frac{}{16} \backslash \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \quad, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}<\frac{64^{22}}{}+\frac{}{64}!^{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(.), \widehat{\mathbf{w}} \quad \mathbf{w}_{*}}{2}<\frac{32^{2}{ }^{2}()^{2}}{2}+\frac{}{128}!\widehat{\mathbf{w}} \quad \mathbf{w}_{*}!^{2}
\end{aligned}
$$

nto 9 and then obta n

$$
\begin{aligned}
& (\widehat{\mathbf{w}}) \\
& \left(\mathbf{w}_{*}\right)+\overline{4} \eta^{\widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}, ~} \\
& <\frac{(.)_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}}{}+\frac{2 \quad(.)\left((\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)\right)}{2}+\frac{16{ }^{2} \log ^{2}(2 .)}{2}+\frac{64 \quad * \log (2 .)}{2} \\
& +\frac{64^{22}}{+}+\frac{32(.)}{2}+\frac{32^{2} 2^{2}()^{2}}{2} \\
& <\overline{4}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}+\frac{1}{2}\left((\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)\right)+\frac{16{ }^{2} \log ^{2}(2 .)}{2}+\frac{64 \quad * \log (2 .)}{2} \\
& +\frac{64^{22}}{}+8+2^{2}
\end{aligned}
$$

wh ch p es

Appendix D. Proof of Theorem 5

thout Assumption 4(d) Le a wh ch sused n the proofs of heore s and does not ho d any ore Instead we w use the fo ow ng vers on that on y re es on the s oothness cond t on

Lemma 4 Under Assumption 2, with probability at least 1 , , for any $\mathbf{w} \quad(\boldsymbol{1})$, we have

$$
\left\|(\mathbf{w}) \quad\left(\mathbf{w}_{*}\right) \quad\left[\hat{\imath}(\mathbf{w}) \quad \hat{\left(\mathbf{w}_{*}\right)}\right]\right\| \ll \quad(\quad)_{1} \mathbf{w} \quad \mathbf{w}_{*}+\mathbf{w}^{\mathbf{w}} \quad \mathbf{w}_{*} \sqrt{\left.\frac{(.)}{(}\right)}
$$

where (.) is define in (9).
he above e a s a d rect consequence of Le a and the un on bound he rest of the proof s s ar to those of heore s and e rst der ve a counterpart of under Le a 4 Co bnng wth Le a 4 w th probab ty at east 1 . we have

ubst tut ng 4 and nto ${ }^{8}$ w th probab ty at east 12 we have

$$
\begin{aligned}
& (\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)+\overline{2}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \\
& <\frac{(.))_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}}{}+\widehat{\mathbf{w}} \quad \mathbf{w}_{*} 2^{2} \sqrt{(\quad .)} \\
& +\frac{2 \quad \log (2,)_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}}{+}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}, \sqrt{\frac{8 \quad \log (2 .)}{}}
\end{aligned}
$$

$$
(1 \quad) \text { AND }\left(\begin{array}{ll}
1 & \left.{ }^{2}\right) \\
\text { YPE OF }
\end{array}\right.
$$

o get 4 we subst tute

$$
\begin{aligned}
& \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \sqrt{\frac{8 \quad * \log (2 .)}{4}}<\frac{8 \quad * \log (2 .)}{-}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}
\end{aligned}
$$

nto 4 and then obta n

$$
\begin{aligned}
& (\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(4+2 \sqrt{\frac{(.)}{2}}+\frac{2 \quad(.)}{}\right)
\end{aligned}
$$

wh ch proves 4
o get : we subst tute

$$
\begin{aligned}
& \frac{2 \log (2,), \widehat{\mathbf{w}} \quad \mathbf{w}_{*}}{+}<\frac{8{ }^{2} \log ^{2}(2,)}{2}+\frac{\overline{8}}{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*^{*}}{ }^{2} \\
& \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \sqrt{\frac{8 \quad * \log (2 .)}{16}}<\frac{32 \quad * \log (2 .)}{\mathbf{w}} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \\
& 2 \quad, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}<\frac{32^{22}}{}+\frac{}{32}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \\
& \widehat{\mathbf{w}} \quad \mathbf{w}_{*}, \sqrt{\underline{(.)}}<\frac{16^{2}(.)^{2}}{}+\frac{}{64}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \\
& \frac{(.), \widehat{\mathbf{w}} \quad \mathbf{w}_{*}}{T}<\frac{16^{2}{ }^{2}()^{2}}{2}+\overline{64}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}
\end{aligned}
$$

nto 4 and then obta n

$$
\begin{aligned}
& (\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)+\frac{\overline{4}}{4}, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \\
& <\frac{(.)_{1} \widehat{\mathbf{w}} \quad \mathbf{w}_{*^{\prime}}{ }^{2}}{}+\widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \sqrt{\frac{(.)}{}}+\frac{8{ }^{2} \log ^{2}(2,)}{2}+\frac{32 \quad{ }^{2} \log (2,)}{2} \\
& +\left(\frac{32^{2}}{}+\frac{16^{2}(.)}{2}+\frac{16^{2^{2}}()}{2}\right)^{2} \\
& \left.<\frac{{ }^{2}, \widehat{\mathbf{w}} \mathbf{w}_{*}{ }^{2}}{25}+\overline{5}\right\rceil \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}+\frac{8{ }^{2} \log ^{2}(2 .)}{2}+\frac{32 \quad * \log (2 .)}{} \\
& +\left(\frac{32^{2}}{}+\frac{16}{25}+\frac{16^{3}}{625^{2}}\right)^{2} \\
& \stackrel{\lambda}{\lambda} \leq \frac{6}{25} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}+\frac{8{ }^{2} \log ^{2}(2 .)}{2}+\frac{32 \quad * \log (2 .)}{2}+\left(\frac{32^{2}}{}+\frac{416}{625}\right){ }^{2}
\end{aligned}
$$

By subtract ing , $\widehat{\mathrm{w}} \quad \mathrm{w}_{*}{ }^{2} 4$ fro both s dis we co p te the proof of

Appendix E. Proof of Theorem 7

e cons der two cases In the rat case we assur e that

$$
\left.\underline{!}^{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*}\right\rangle<\frac{1}{2}
$$

ne $(\rho$ s s moth and () s L asch ty cont nous we have

$$
\begin{array}{ll}
& (\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)=(\widehat{\mathbf{w}})+(\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right) \quad\left(\mathbf{w}_{*}\right) \\
<_{l} \widehat{\mathbf{w}} & \mathbf{w}_{*} \\
\left(\mathbf{w}_{*}\right)+\overline{2}!\widehat{\mathbf{w}} & \mathbf{w}_{*}!^{2}+, \widehat{\mathbf{w}} \\
\mathbf{w}_{*}! \\
< & \widehat{\mathbf{w}} \\
\mathbf{w}_{*}!! & \left(\mathbf{w}_{*}\right)_{!}+\overline{2}!\widehat{\mathbf{w}} \\
\mathbf{w}_{*}
\end{array}{ }^{2}+, \widehat{\mathbf{w}} \quad \mathbf{w}_{*}!<\frac{+}{2}+\frac{}{2^{4}}
$$

where the ant step ut es Jensen s nequa ty
$!\quad\left(\mathbf{w}_{*}\right)_{!}=\| \mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}}\left[\quad\left(\begin{array}{lll}\mathbf{w}_{*} \mathbf{x} &)\end{array}\right] \|<\left.\mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}}\right|_{!} \quad\left(\begin{array}{lll}\mathbf{w}_{*} & \mathbf{x} &)_{!}\end{array}\right]<\right.$
Next we study the case

$$
\frac{1}{2} \quad, \widehat{\mathrm{w}} \quad \mathrm{w}_{*} \quad<2
$$

Fro 9 we have

$$
\begin{aligned}
& <\underbrace{\sup ^{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq\left\|\hat{\mathbf{w}}-\mathbf{w}_{*}\right\|}\left\langle\begin{array}{llll}
\\
(\mathbf{w}) \quad\left(\mathbf{w}_{*}\right) \quad\left[{ }^{\wedge}(\mathbf{w}) \quad{ }_{\left.\left(\mathbf{w}_{*}\right)\right] \mathbf{w}} \mathbf{w}_{*}\right\rangle
\end{array}\right.}_{:=B_{1}} \\
& +\underbrace{\left\|\quad\left(\mathbf{w}_{*}\right){ }^{\widehat{ }}\left(\mathbf{w}_{*}\right)\right\|}_{:=B_{2}}!\widehat{\mathbf{w}} \quad \mathbf{w}_{*}
\end{aligned}
$$

$\begin{array}{llllll}\mathrm{e} \text { rat bound } & 1 & \text { o ut } & \text { re the fact the randi } & \text { var ab } \mathrm{e}, \widehat{\mathrm{w}} & \mathbf{w}_{*}\end{array}$ es n the range $\left(\begin{array}{lll}1 & 2 & 2\end{array}\right]$ we dove op the fo ow ing e a
Lemma 5 Under Assumptions 7 and 8, with probability at least 1 ., for all

$$
\frac{1}{2}<2
$$

the following bound holds:
$\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma}\left\langle\quad(\mathbf{w}) \quad\left(\mathbf{w}_{*}\right) \quad\left[\hat{}(\mathbf{w}) \quad \hat{\left.\left(\mathbf{w}_{*}\right)\right] \mathbf{w}} \quad \mathbf{w}_{*}\right\rangle<\frac{4 \quad 2}{\mathbf{1}^{-}}(8+\sqrt{2 \log -})\right.$
where $=2 \log _{2}()+\log _{2}(2)$.

$$
(1 \quad) \text { AND }\left(1^{2}\right) \text { YPE OF } \quad \text { BO ND OF E M }
$$

Based on the above e a we have w th probab ty at east 1

$$
1<\frac{4}{1_{1}-\frac{\widehat{\mathbf{w}}}{\mathbf{w}_{*}}}{ }^{2}(8+\sqrt{2 \log -})=\frac{\mathbf{w}_{1}^{-} \mathbf{w}_{*}^{2}}{}
$$

where s de ned n
e then proceed to hand e 2 wh ch can be upper bounded n the sa e way as A_{2} In part cu ar we have the fo ow ng e a

Lemma 6 Under Assumptions 7, 8, and 10, with probability at least 1 , we have

$$
\left\|\quad\left(\mathbf{w}_{*}\right) \quad\left(\mathbf{w}_{*}\right)\right\|<\frac{2 \log (2 .)}{}+\sqrt{\frac{8 \quad \log (2 .)}{}}
$$

ubst tut ng 44 and 4 nto 4 w th probab ty at east 12 , we have

$$
\begin{aligned}
& (\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)+\overline{2}!^{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*}{ }^{2} \\
< & \frac{\widehat{\mathbf{w}} \quad \mathbf{w}_{*}^{2}{ }^{2}}{1}+\frac{2}{} \log (2,)_{\uparrow} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}+ \\
& \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \sqrt{\frac{8}{* \log (2 .)}}
\end{aligned}
$$

e subst tute

$$
\begin{aligned}
& \widehat{\mathbf{w}^{\mathbf{w}}} \quad \mathbf{w}_{*} \sqrt{\frac{8 \quad{ }^{2} \log (2,)}{4}}<\frac{8 \quad * \log (2,)}{-} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}
\end{aligned}
$$

nto 4^{\prime} and then have

Co $b \mathrm{n}$ ng the above nequa ty w th 4 we obta n
o prove \quad we subst tute

$$
\begin{aligned}
& \frac{2}{\log (2,)_{\uparrow} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}} \ll \frac{8{ }^{2} \log ^{2}(2 .)}{2}+\overline{8}!\widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \\
& \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \sqrt{\frac{8 \quad{ }^{2} \log (2 .)}{2}}<\frac{16 \quad * \log (2 .)}{8}+\widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}
\end{aligned}
$$

nto 4: and then have

$$
\begin{aligned}
& (\widehat{\mathbf{w}}) \quad\left(\mathbf{w}_{*}\right)+\frac{\overline{4}}{} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2} \\
& <\frac{\left.\right|_{1}{ }^{\widehat{\mathbf{w}}} \mathbf{w}_{*}{ }^{2}}{\mathbf{w}^{2}}+\frac{8{ }^{2} \log ^{2}(2 .)}{2}+\frac{16 \quad * \log (2 .)}{} \\
& \dot{<}_{4} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}{ }^{2}+\frac{8{ }^{2} \log ^{2}(2 .)}{2}+\frac{16 \quad * \log (2 .)}{}
\end{aligned}
$$

Co $b \mathrm{n}$ ng the above nequa ty w th 4 we obta n

Appendix F. Proof of Lemma 5

F rst we part t on the range $\left(\begin{array}{lll}1 & 2 & 2\end{array}\right]$ nto $=2 \log _{2}()+\log _{2}(2 \nmid$ consecut ve seg ents
$\Delta_{1} \Delta_{2} \quad \Delta_{s}$ such that

$$
\Delta_{k}=(\underbrace{\frac{2^{k-1}}{2}}_{:=\gamma_{k}^{-}} \underbrace{\frac{2^{k}}{2}}_{:=\gamma_{k}^{+}}]=1
$$

hen we cons der the case $\quad \Delta_{k}$ for a xed va ue of $\quad \mathrm{e}$ have

$$
\begin{array}{rlllll}
& \sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma}\langle & (\mathbf{w}) & \left(\mathbf{w}_{*}\right) & {\left[\begin{array}{ccc}
& (\mathbf{w}) & \left.\widehat{\left.\left(\mathbf{w}_{*}\right)\right] \mathbf{w}} \quad \mathbf{w}_{*}\right\rangle \\
< & \sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}}\langle & (\mathbf{w}) \\
\left(\mathbf{w}_{*}\right) & {[\widehat{(\mathbf{w})}} & \widehat{\left.\left(\mathbf{w}_{*}\right)\right] \mathbf{w}} \\
\left.\mathbf{w}_{*}\right\rangle
\end{array}\right\rangle}
\end{array}
$$

Based on the McD ar ds nequa ty McD ar d $\quad 9{ }^{8}$ and the acher co pexty Bart ett and Mende son we have the fo ow ng e a to upper bound the ast ter

Lemma 7 Under Assumptions 7 and 8, with probability at least 1 , we have

$$
\begin{aligned}
& \sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}}\langle(\mathbf{w}) \\
< & \left(\mathbf{w}_{*}\right) \quad\left[\begin{array}{ccc}
(\mathbf{w}) & \left.\left(\mathbf{w}_{*}\right)\right] \mathbf{w} & \left.\mathbf{w}_{*}\right\rangle \\
\left.\frac{(+}{+}\right)^{2} \\
\hline
\end{array}\left(8+\sqrt{2 \log \frac{1}{-}}\right)\right.
\end{aligned}
$$

nce $\quad \Delta_{k}$ we have

$$
\stackrel{+}{k}=2 \stackrel{-}{k}<2
$$

hus w th probab ty at east 1 . we have

$$
\begin{aligned}
& \sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma}\left\langle\quad(\mathbf{w}) \quad\left(\mathbf{w}_{*}\right) \quad\left[\hat{(\mathbf{w})} \hat{\left.\left(\mathbf{w}_{*}\right)\right] \mathbf{w}} \quad \mathbf{w}_{*}\right\rangle\right. \\
& 44^{8} 4^{49} \frac{4^{2}}{1^{-}}\left(8+\sqrt{2 \log \frac{1}{-}}\right)
\end{aligned}
$$

e co p ete the proof by ta ng the un on bound over seg ents

Appendix G. Proof of Lemma 7

os p fy the notat on we de ne
$\left(\begin{array}{ll}1 & n\end{array}\right)=\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}}$

$$
\left(\mathbf{w}_{*}\right) \quad \frac{1}{-} \sum_{i=1}^{n}\left[\begin{array}{lll}
i(\mathbf{w}) & \left.i\left(\mathbf{w}_{*}\right)\right] \mathbf{w} & \left.\mathbf{w}_{*}\right\rangle \tag{w}
\end{array}\right.
$$

$$
i(\mathbf{w})=\left(\begin{array}{lll}
\mathbf{w} & \mathbf{x}_{i} & i
\end{array}\right) \quad=1
$$

o upper bound (1
${ }_{n}$) we ut ze the McD ar ds nequa ty McD ar $\begin{array}{lll} & 8 & 8\end{array}$

(1) AND $\left(1^{2}\right)^{2}$ YPE OF K Bo ND OFE

Theorem 8 Let 1_{n} be independent random variables taking values in a set A, and assume that $: A^{n} \quad \mathbb{R}$ satisfies

$$
\sup _{x_{1}, \ldots, x_{n}, x_{i}^{\prime} \in A}\left|\quad\left(\begin{array}{llllll}
1 & n
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & i-1 & \prime & i+1 \\
& & & \\
&
\end{array}\right)\right|<i_{i}
$$

for every $1 \ll$. Then, for every 0 ,

$$
\text { - } \left.\left(\begin{array}{ll}
1 & { }_{n}
\end{array}\right) \mathrm{E}\left[\begin{array}{ll}
(1 & n
\end{array}\right)\right] \quad \bullet<\exp \binom{2^{2}}{\sum_{i=1}^{n}{ }_{i}^{2}}
$$

As po nted out n Remark 7 Assumptions 7 and 8 py the rando funct on $i(+$ s s ooth and thus

$$
i_{i}(\mathbf{w}) \quad i\left(\mathbf{w}_{*}\right) \mathbf{w} \quad \mathbf{w}_{*}+<\quad \mathbf{w} \quad \mathbf{w}_{*}{ }^{2}<\quad\binom{+}{k}^{2}
$$

As a resu t when a rando funct on i changes the rando var abe $\left(\begin{array}{ll}1 & n\end{array}\right)$ can change by no ore than $2\binom{+}{k}^{2} \quad$ o see th s we have

$$
\begin{aligned}
& \text { n) } \left.\begin{array}{llllll}
1 & i-1 & \begin{array}{l}
i \\
1
\end{array} & i+1 & n
\end{array}\right) \\
& <\frac{1}{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}}\left\langle\quad{ }_{i}^{\prime}(\mathbf{w}) \quad{ }_{i}^{\prime}\left(\mathbf{w}_{*}\right) \quad\left[\quad i(\mathbf{w}) \quad{ }_{i}\left(\mathbf{w}_{*}\right)\right] \mathbf{w} \quad \mathbf{w}_{*}\right\rangle<\frac{2}{-} \quad\binom{+}{k}^{2}
\end{aligned}
$$

McD ar d s nequa ty p es that w th probab ty at east 1

$$
\left.\left(\begin{array}{ll}
1 & n
\end{array}\right)<\mathrm{E}\left[\begin{array}{cc}
(1 & n
\end{array}\right)\right]+\binom{+}{k}^{2} \sqrt{\frac{2}{-1} \log \frac{1}{-}}
$$

Let $\left(\begin{array}{cc}\prime & \prime \\ 1 & n\end{array}\right)$ be an ndependent copy of $\left(\begin{array}{cc}1 & n\end{array}\right)$ and $1 \quad{ }^{1} \quad{ }_{n}$ be $\quad d$ Vade a cher var ab es w th equa probab ty of be ng 1 s ng techn ques of tade acher co pext es Bart ett and Mende son we bound E [($1 \quad n)]$ as fo ows.

$$
\begin{aligned}
& \mathrm{E}_{h_{1}, \ldots, h_{n}}\left[\operatorname { s u p } _ { \mathbf { w } : \| \mathbf { w } - \mathbf { w } _ { * } \| \leq \gamma _ { k } ^ { + } } \left\langle(\mathbf{w}) \quad\left(\mathbf{w}_{*}\right) \quad \frac{1}{-} \sum_{i=1}^{n}\left[\begin{array}{lll}
i(\mathbf{w}) & \left.i_{i}\left(\mathbf{w}_{*}\right)\right] \mathbf{w} & \left.\mathbf{w}_{*}\right\rangle
\end{array}\right]\right.\right. \\
& =-\mathrm{E}_{h_{1}, \ldots, h_{n}}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}}\right. \\
& \left.\mathrm{E}_{h_{1}^{\prime}, \ldots, h_{n}^{\prime}}\left[\sum_{i=1}^{n}\left\langle\quad{ }_{i}^{\prime}(\mathbf{w}) \quad \quad_{i}^{\prime}\left(\mathbf{w}_{*}\right) \mathbf{w} \quad \mathbf{w}_{*}\right\rangle\right] \quad \sum_{i=1}^{n} \quad i(\mathbf{w}) \quad i_{i}\left(\mathbf{w}_{*}\right) \mathbf{w} \quad \mathbf{w}_{*}\right] \\
& <\frac{1}{-} \mathrm{E}_{h_{1}, \ldots, h_{n}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}}\right. \\
& \left.\sum_{i=1}^{n}\left\langle\quad{ }_{i}^{\prime}(\mathbf{w}) \quad{ }_{i}^{\prime}\left(\mathbf{w}_{*}\right) \mathbf{w} \quad \mathbf{w}_{*}\right\rangle \quad \sum_{i=1}^{n} \quad i(\mathbf{w}) \quad{ }_{i}\left(\mathbf{w}_{*}\right) \mathbf{w} \quad \mathbf{w}_{*}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{-} \mathrm{E}_{h_{1}, \ldots, h_{n}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}, \epsilon_{1}, \ldots, \epsilon_{n}}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}}\right. \\
& \quad \sum_{i=1}^{n}
\end{aligned}
$$

 fro the co par son theore of tade acher co pextes Ledoux and a agrand 99 n part cu ar Le a of Me r and Zhang we have

$$
\left.\left.\left.\begin{array}{rl}
& \mathrm{E}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i\left(i(\mathbf{w})+{ }_{i}(\mathbf{w})\right)^{2}\right] \\
< & 4_{k}^{+} \sqrt{\mathrm{E}}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i\left(i(\mathbf{w})+{ }_{i}(\mathbf{w})\right)\right] \\
< & 4_{k}^{+} \sqrt{ }\left(\mathrm { E } \left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i\right.\right. \\
i
\end{array} \mathbf{N}^{n}\right)\right]+\mathrm{E}\left[\sup _{\mathbf{w}:\|\mathbf{w}-\mathbf{w} *\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i i(\mathbf{w})\right]\right) .
$$

ar y we have

$$
\left.\left.\begin{array}{rl}
& \mathrm{E}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i(i(\mathbf{w})\right. \\
\left.i(\mathbf{w}))^{2}\right] \\
< & 4_{k}^{+} \sqrt{ }\left(\mathrm { E } \left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i\right.\right.
\end{array} i^{(\mathbf{w})}\right]+\mathrm{E}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i i(\mathbf{w})\right]\right) .
$$

Co bnng and 4 we arr ve at

$$
\begin{array}{rl}
\mathrm{E}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i_{1} i_{i}(\mathbf{w}) \quad i\left(\mathbf{w}_{*}\right) \mathbf{w} \quad \mathbf{w}_{*}\right] \\
< & 2_{k}^{+} \sqrt{ }(\underbrace{\mathrm{E}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i\right.}_{:=C_{1}} i_{i}(\mathbf{w})]
\end{array} \underbrace{\mathrm{E}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i i^{[\mathbf{x})}\right]}_{:=C_{2}}) .
$$

e proceed to upper bound $1 \mathrm{n} \quad$ Fro our de nt on of ${ }_{i}(\mathbf{w})$ we have

$$
\begin{aligned}
& \left.\left|{ }_{i}(\mathbf{w}) \quad{ }_{i}\left(\mathbf{w}^{\prime}\right)\right|=\left.\frac{1}{1}\right|^{\prime}\left(\begin{array}{llllll}
\mathbf{w} & \mathbf{x}_{i} & i
\end{array}\right) \quad{ }^{\prime}\left(\begin{array}{llll}
\mathbf{w}^{\prime} & \mathbf{x}_{i} & i
\end{array}\right) \right\rvert\, \\
< & \sqrt{ } \left\lvert\, \begin{array}{lllllll}
\mathbf{w} & \mathbf{x}_{i} & , \mathbf{w}^{\prime} & \mathbf{x}_{i}|=\sqrt{ }| \begin{array}{lllll}
\mathbf{x}_{i} & \mathbf{w} & \mathbf{w}_{*} & \mathbf{x}_{i} & \mathbf{w}^{\prime}
\end{array} \mathbf{w}_{*}
\end{array}\right.
\end{aligned}
$$

App y ng the co par son theore of acher co pextes agan we have

$$
{ }_{1}<\sqrt{\mathrm{E}}\left[\sup _{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{*}\right\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i \mathbf{x}_{i} \mathbf{w} \quad \mathbf{w}_{*}\right]=2
$$

[^0]: For brev ty we treat C as a constant because t on y has a double ogar th c dependence on n

